
Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1080

Code Generation for Embedded Software for
Modeling Clear Box Structures

Prof. V. Chandra Prakash,
Department of Information Technology, K L University, Vaddeswaram, Guntur district 522502

Email: vchandrap@rediffmail.com
Dr. Sastry JKR,

Department of Information Technology, K L University, Vaddeswaram, Guntur district 522502
Email: drsatry@kluniversity.in

Mr. D. Bala Krishna Kamesh,
Department of Freshmen Engineering, K L University, Vaddeswaram, Guntur district 522502

Email: kameshdbk@gmaill.com

--- ABSTRACT--

Cleanroom software Engineering (CRSE) recommended that the code related to the Application systems be generated either
manually or through code generation models or represents the same as a hierarchy of clear box structures. CRSE has even
advocated that the code be developed using the State models that models the internal behavior of the systems. No framework
has been recommended by any Author using which the Clear boxes are designed using the code generation methods. Code
Generation is one of the important quality issues addressed in cleanroom software engineering. It has been investigated that
CRSE can be used for life cycle management of the embedded systems when the hardware-software co-design is in-built as
part and parcel of CRSE by way of adding suitable models to CRSE and redefining the same. The design of Embedded
Systems involves code generation in respect of hardware and Embedded Software. In this paper, a framework is proposed
using which the embedded software is generated. The method is unique that it considers various aspects of the code
generation which includes Code Segments, Code Functions, Classes, Globalization, Variable propagation etc. The proposed
Framework has been applied to a Pilot project and the experimental results are presented.

Key words: Embedded Systems, Sate Box, Clean Room Software Engineering, Verification and Validation, UML models, clear box,
Embedded Software
--
Paper submitted: June 15, 2011 Accepted Date: July 29, 2011
--

I. INTRODUCTION:

CRSE (Clean room Software Engineering) methodology
recommended that the code be developed/generated as Clear
box structures using standard structures such as If -Then-
Else with the help of State model built for designing the
internal behavioral of a system. [1] Have presented the
internal behavioral modeling of the embedded systems
trough state box structures and presented the refined CRSE
methodology which is shown in the Figure 1.1. They have
also presented the methods [2] using which the state models
presented by them can be verified and validated. An
embedded system shall be transiting from one state to other
in order to realize the user defined functions. The states
include both hardware and software. The next step in CRSE
is the design of Clear Box which mostly includes the
modeling of code generation.

Figure 1, 1 Refined CRSE Model until the stage of

Internal Behavioral Modeling

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1081

An embedded system shall be transiting from one state to
other in order to realize the user defined functions. The
states include both hardware and software. The next step in
CRSE is the design of Clear Box which mostly includes the
modeling of code generation.

When an embedded system is in a particular state, either
the processing is being done within the Hardware or
execution is being done within the Micro controller or
interaction is taking place with hardware through execution
of the software. The state model that incorporated the Co
design of hardware and software must be split into HW
behavior and software behavior so that the same can be
individually optimized, tested and then integrated to present
the final solution.

Two code generation frameworks are necessary that
include code generation for Hardware to facilitate selection,
integration and displaying the layout and code generation
related to Embedded Software. Many frameworks have
been presented in the past to generate code relating to
presentation of foot print. [3] have presented a method of
generating the code meant for modeling the Hardware for
facilitating the selection of the hardware, integration of the
hardware and displaying the layout of the Hardware
diagram. The method proposed by them can be used for
conducting different kinds of analysis/Testing that include
signal balancing, Latency computations, Signal
overloading, matching of the signals etc.

CRSE has recommended that the code be developed by
using the standard structures like if-then-else but no formal
framework has been presented for generation of the code
related to the Hardware CRSE as such has not addressed
the issue of generating the code related to HW either for
foot print or selection, integration and layout design of the
Hardware. Numbers of authors have presented the Code
Generation methods. Most of them related to generation of
HW foot print.

Code is required for two purposes. Code is required for
designing of the hardware which includes selection,
integration and display. The internal functioning of each of
the hardware component can also be represented in terms
of the code but when it comes to embedded systems, since
hardware chips are selected as modules, the code related to
selection, integration and display is more important.
Designing and representing the internal functioning of each
of the Hardware device is not under the scope of this paper.

CRSE advocates that code be generated using state model.
The state model includes both Hardware and Software
states. When a system is in a hardware state other than the
Micro Controller state, no code is executed. Some
electronic function is being processed. Most of the code is

executed when the embedded system is in software state at
which time code is executed within the micro controller.
The hardware states are not that important for generating
the code related to embedded software. Code in respect of
HW, however is required to select, integrate and layout the
hardware diagram using which different types of modeling
can be carried such as signal loading, signal conversion,
power balancing etc. Even the timing of the signals can
also be analyzed and designed using the Hardware Layout
Diagram.

In this paper, a formal framework is proposed using which
code related to hardware for selection, integration and
presenting the layout has been presented. The framework
has been applied to the pilot project described in section 3.0

II. RELATED WORK

 [4] Have presented a model based code generation
framework for embedded real time system considering
multiple operating systems, communication mechanisms,
different hardware sizes and dynamic structures of the
software. [5] A number of design and code generation
approaches have been presented in the literature for
development of embedded systems that require
implementation of concurrency. [6] have presented
Framework called StreamIT which is based on dataflow
formalism. [7], Real time workshop (RTW) from mathwork
considered code generation based control system modeling
and time has been considered as integral part of the model
development. [8] [9] have proposed partial evaluation
methods that help automating the designing and code
generation process.

[10] Have used partial evaluation methods for optimized
code generation by transforming a generalized actor based
model to a target code while preserving the models
semantics [5] has generated C Code based on the Models.
The code is related to software that is embedded into
software. The issues related to co existence of hardware
and software has not been considered. [10] Have proposed
a method of generating SystemC TLM Model from UML
specification. Using the SustemC TLM Model, SystemC
RTL Model and the embedded software is generated. The
SystemmC RTL model is synthesized to generated FPGA
RTL code in the VHDL language and a ASIC netlist is
generated. [11] have proposed method to generated
embedded software from state diagrams. Prior to the
generation of the code the state charts are validated for
correctness related to unused states, one initial state, states
with outgoing links, rechability of every state from initial
state, existence of at least one final state, availability of at
least one path that reaches the final state even if a loop is in
existence at any of the state.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1082

 [12] Have investigated the fitness criteria for a
programming language that can be used to generate the
Embedded Software Code from model based specifications.
They have checked the fitness of Java language from the
point of object oriented semantics and the ability to support
the issues related to concurrency. [13] have used SDL
(Specification Description Language) for modeling
complex real-time embedded system. SDL is a Graphic and
formal language. User can interact with SDL and build the
embedded system from the scratch. [[14] Have proposed
building a system not necessarily the embedded systems
using the Colored Petri net models (CPN). The model is
debugged and verified for its exactness suiting to the
application. 15] have explained that an embedded system
can be developed in terms of UML Artifacts. They have
proposed that SystemC code can be generated by way of
establishing the SystemC equivalents to UML notations.
They have added some standard extensions to UML so that
the UML notations can be mapped to SystemC constructs.
[16] have recommended a method to generate code given a
set of Hierarchical state Charts. They have also explained
the way the Hierarchical or concurrent processing state
charts can be developed.

Most of the methods discussed above lacks in many of the
respects which include inability to generate the code related
to Embedded Software considering many of the intricate
aspects. Very few models are available that help generating
the embedded software. In the literature while some
strategies have been explained to generate the embedded
software, no specific Framework as such has been
recommended as of now. Again no common language is
used to model the software and the hardware as a result
becomes necessary to use too many tools and frequent
translations leading to inefficient methods for generating
either the Hardware or Software related code. The
performance and scheduling issues are never addressed
especially when the embedded software has to run under
the influence of real time operating system.

III. PILOT PROJECT � TEMPERATURE MONITORING AND

CONTROLLING OF NUCLEAR REACTOR SYSTEM (TMCNRS)

The block diagram at Figure 3.1 shows various hardware
components and the integration between them related to
TMCNRS. The mechanical setups that simulate the Nuclear
reactors are connected with sensing devices such as
Temperature sensors, and actuating devices such as heaters
and pumps. Both the sensing and actuating devices are
connected to the embedded system (TARGET) and the
embedded system is connected to a remote computer
(HOST) through which the operator monitors and controls
the operation of the nuclear reactor.

The temperature sensors are connected to signal
conditioners and the outputs of signal conditioners are
connected to A/D converter which communicates with
Micro Controller using I2C Communication protocol. The
output devices which include LCD interface to HOST, and
Relays to actuate pumps are connected to the Micro
Controller through its output ports. The access to the
embedded system is controlled through a password entered
through the key board which in connected to A/D
converter. The application running in the embedded system
captures the key board strokes and verifies the validity of
the password. The rest of the application is invoked when
the password is valid.

Figure 3.1 TMCNRS Hardware Integration diagram

Different types of outputs are written on LCD such as Help
messages, Sensed temperatures, reference temperatures,
and temperature mismatches etc. The HOST is connected
to the Micro Controller using RS232C interface. The ES
application has the interface for reading the reference
temperatures and displaying the same on LCD. A buzzer is
connected to Micro Controller and the buzzer is triggered
when the difference in temperatures read is more than a
threshold level. The ES board is provided with regulated
power supply to drive the Micro Controller and to the
relays for activating the pumps. The sensors are mounted
on the water tube situated in the mechanical setup. Flow
control is achieved through activation and deactivation of
the relays that control the Start-Stop mechanism of the
pumps. Heaters are used to raise the temperature of the
tubes. The mechanical setup for such an arrangement is
shown in the Figure 3.2.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1083

Figure 3.2 Mechanical setup of the TMCNRS

The Embedded application that runs within the Micro
Controller has the following tasks:

1. Read Key Board input
2. Validate the Password
3. Read Reference Temperatures from the HOST
4. Write Initialization output to LCD
5. Write actual outputs to LCD
6. Read the sensed Temperatures
7. Compare the Temperatures
8. Actuate the buzzer
9. Set and reset the relays to control the pumps
10. Communicate with HOST to transmit the sensed

Temperatures

IV. REQUIREMENTS OF CODE GENERATION FRAMEWORK FOR
GENERATING EMBEDDED SOFTWARE

The following are the requirements that must be addressed
for designing the framework for Embedded Software
related code generation.

1. Identification and maintaining the standard code
segments dully identifying the variables used as
Global, instance, return, local or arguments to the
functions. A convention to refer to the kind of
variables and include elements must be designed
and used. The code segments may also refer to
some standard functions.

2. Identification and maintaining standard functions
constructed out of the standard code segments and
other functions. The variables to be used in the
functions must be projected as Global, Local,
instance, return or functional out of the definitions
included in the code segments

3. Mapping the standard functions as non member
functions and defining them as friend functions
within the classes where the functions are required

4. Mapping the member functions to the respective
classes. While doing so define the variables as
Instance or local and the global variables be
declared right in the beginning of the program file

5. Recognize every software state in the state
diagram and include the methods of the classes as
the entry procedures. The methods should be
executed whenever a transition is made to a
software state due to occurrence of either an
internal or external event.

6. Generate the code
a. Include all the Global variables in the

beginning of the program file
b. Include all the classes as defined in the class

diagrams duly including instance variables,
methods, local variables and the code

c. Develop a non member main method by
tracing all the logical paths in the state
diagrams and include code that facilitates the
execution of the logical paths. The higher
level state diagram shall be used for
scheduling the tasks that are repetitive in
Nature (Self loop states) and the lower level
state diagrams are used for code control
within the main method. Initiate the RTOS
and include the RTOS functions that
schedules the tasks and start the RTOS for
commencement of the execution of the
embedded application

d. Include all the non member functions which
are declared as friends within the classes.

V. CODE GENERATION FRAMEWORK FOR EMBEDDED SOFTWARE

MODELING

CRSE has advocated that the code be developed using the
state box specification. Procedures are to be executed when
a system enters into a state or leaves the state or while in
the state. Entering into a state happens when state transition
takes place. Since every state is a snapshot of an object of a
class, the procedures are the functions that are encapsulated
into the classes. Code generation therefore implies that the
code related to the functions be developed either manually
or by some automated means. Manually coding is always
erroneous and it is important that the code be generated
automatically so that high quality reliable code can be
obtained. Code generation is one of the essential
requirements of the Embedded Systems.

Many authors have recommended for automatic code
generation based on the design specification, but the code
generation related to hardware design alone has been
covered to certain extent and no recommendations have
been available in the literature for generating the code
related to embedded application.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1084

It has been recommended that generation of code for the
embedded system in a very structured manner and using a
particular architecture will lead to delivery of high quality
Embedded Systems. One of the design principles of
Embedded System is that the code be developed using a
standard and structured methods based on the foundations
of the Frameworks.

It has been recognized that it is possible to determine
standard code structures related to embedded systems. The
standard code segments use global or local input and
produces output again either local or Global. The standard
code segments are in different files and can be included
wherever necessary. The standard code segments can be
stored as library and the library can be grown every time a
new code segments suiting to the embedded systems are
identified, the same can be included into the library. Even
clean room software engineering also advocated that
standard control structures be used for delivering high
quality code.

The standard code functions can be identified by way of
including the standard code structures and other standard
code functions. Even a standard code structure can also
include a standard code function. The code structures and
the functions are included in the sequence such that
standard logic is implemented. The standard code functions
are then mapped to the classes based on the expected
responsibilities of the classes. The main control logic is
implemented by way of taking the instances of the classes
and calling for the functions through object references.

The sequence in which the code contained in various
classes gets executed based on the sequence flows that are
built into the sate Diagrams. Thus the state diagrams and
class diagrams used for modeling the internal behavior of
the embedded systems will be the foundations using which
code generation Framework can be defined and used for
generating the code related to any of the embedded
systems.

The code generation method proposed in this paper is
primarily based on the library management which helps in
reusing the library elements to construct code segments,
code functions and functional modules. The framework for
code generation involves several steps. A code function is a
whole unit of execution generally involving one or more
number of code segments. A set of code segments together
with some other functions form a code function. The
function units that are related to communicating with the
hardware devices and the code functions units that are used
as non member functions are recognized and identified as
the code functions. The code functions are either general
purpose functions such as converting ASCII to HEX or
specific member functions that processes and communicate

with a peripheral device. The code functions will be
defined with various types of variables based on the code
segments included in them. Some more variables that are
specific to the code functions are defined within the code
functions. Every code segment will clearly recognize
variables, their types and location where the variables must
have been declared including the details of locations which
include, Global, instance, local, functional arguments and
return variables. This way of categorizing the variables will
clearly help in mapping and constructing code functions
and the class modules in which the code segments are
placed.

The code segments are pre identified and developed as a
library over a period of time. The library is maintained and
more number of code segments are added to the library as
when needed especially when a ES application is analyzed
and designed. The code segments identified in respect of
TMCNRS are placed in a library of Code Segments. A
code segment may include many other code segments or
may even call code functions.

A repository of code segments can be maintained which
will be used latter for resolving and placing the variables in
appropriate locations. The details of the repository
constructed for locating and maintaining the standard code
structures that help generating the code for TMCNRS is
shown in the Table 5.1. The Framework is implemented
through several steps of execution

Step #1 Construct a Library of the code segments

A code segment is a unit of execution that is required quite
frequently. The code units that are related to
communicating with the hardware devices and the code
units that are used in non member functions are recognized
and identified as the code segments. Every code segment
will clearly recognize variables, their types and location
where the variables must have been declared including the
details of locations which include, Global, instance, local,
functional arguments and return variables. This way of
categorizing the variables will clearly help in mapping and
constructing code functions and the class modules in which
the code segments are placed.

The code segments are pre identified and developed as a
library over a period of time. The library is maintained and
more number of code segments is added to the library as
when needed especially when a ES application is analyzed
and designed. The code segments identified in respect of
TMCNRS are placed in a library of Code Segments. A
code segment may include many other code segments or
may even call code functions.

A repository of code segments can be maintained which
will be used latter for resolving and placing the variables in

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1085

appropriate locations. The details of the repository
constructed for locating and maintaining the standard code
structures that help generating the code for TMCNRS is
shown in the Table 5.1. The contents of the Code Segments
Library designed for TMCNRS systems are placed below:

Step #2 Construct a Library of Non-member functions

Code functions may be member functions or member
functions. The functions that are mapped to the classes
shall be the member functions and the remaining functions
shall be non member functions but shall be declared as
friend functions with the classes wherever needed. When
non member functions are mapped to the classes the same
will be defined as non member functions.

A library of standard non member functions are identified
and maintained as shown in the Table 5.2. The Mapping of
the code segments to the Non Member functions is also
shown in the Table 5.2. When code segments are included
into a function, the variable declarations as instance, global
local, and return or functional shall be automatically got
projected and maintained.

Step #3 Construct a Library of Hardware related Code

functions

Some of the Code functions are member functions of the
classes that are related to Hardware Devices. A library of
standard member functions that are related to hardware are
identified and maintained as shown in the Table 5.3. The
Mapping of the code segments to the Member functions of
the Hardware classes is also shown in the table 5.3. When
code segments are included into a function, the variable
declarations as instance, global local, and return or
functional shall be automatically get projected and
maintained.

Step #4 Map the Non member functions to the Classes

The non member functions are mapped to various classes
as friend functions as necessary. The mapping of the Non
member functions to the classes has been shown in the
Table 5.4. When non member functions are mapped to the
classes the Global variables and instant variables will be
located at global declarations or instance declarations as the
case may be. When functions are mapped, the variable
declarations shown in the function definition will be
automatically located either as Global or instance variables

Step #5 Map the Hardware dependent functions to the

classes that are related to the Hardware

The hardware dependent functions are mapped to the
classes that implement the interface with the hardware
devices. The data repository showing the mapping is shown

in the Table 5.5. The following are the classes related to
Hardware. When functions are mapped, the variable
declarations shown in the function definition will be
automatically located either as Global or instance variables

Step #6 Map the Hardware dependent variables to the

classes that are related to the Hardware

Some of the classes that are related to the Hardware just
have variables that are defined to map to the PINS and
ports of the Micro controller to which the hardware devices
are connected. Signals are asserted on the PINS of the
micro controller by way of setting the memory variables
with appropriate values. Data variables which are mapped
to the PINS are inserted to the classes based on the
Connectivity details.

Step #7 Maps the Support oriented functions to the

supporting Classes

Some of the functions are supporting functions that are
necessary for undertaking specialized activities. Such
functions are mapped to the classes that provide supporting
services to other classes. The mapping of supporting
functions to the supporting classes is shown at the Table
5.6. When supporting functions are mapped, the variable
declarations shown in the function definition will be
automatically located either as Global or instance variables

Step #8 Maps Task oriented functions to the classes that

are self looped

Some of the functions are Task oriented functions that are
necessary for undertaking Task oriented activities. Such
functions are mapped to the classes that provide Task
execution services to other classes. The mapping of task
oriented functions to the Task oriented classes is shown at
the Table 5.7. When task oriented functions are mapped,
the variable declarations shown in the function definition
will be automatically located either as Global or instance
variables

Step #9 Maps the class functions as the entry

procedures of system states.

A system enters into a state due to transition from the
previous state as consequence of occurrence of an event
while system is in previous state. When a system enters
into a state or exiting from a state some procedures are
executed. Some procedures can also be executed while the
system is within the state. In the previous steps explained a
process using which the classes are flushed with the
methods and attributes and established the global behavior
of the embedded system. The mapping of the class methods
to entry procedure of system states will define the state
boxes comprehensively. The system is built using several

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1086

objects and each of the objects be in different states and
execute procedures when the system enters into a particular
state. Table 5.8 shows various objects and states into which
the objects undergo transitions and the kind of procedures
executed for realizing a user requirement.

Step #10 Generate Main Control of execution

The following procedure helps building the main function
in which central control logic is situated.

1. Consider the Top Level State diagram shown at
the figure at Figure 5.1.

2. The procedures that are mapped to the super states
which are self looping states shall be recognized
as the task that must be scheduled within the real
time operating system.

3. Crate a buffer of such schedulable tasks. For each
of the tasks crate a stack as character arrays of a
default length 3000 Bytes

4. For each of the Non schedulable super state, find
sub state chart as shown in the Figure 5.2.

5. Find all the State flows in sub-state chart by
following Right to left and top to bottom rule

6. For each of the sub state flow find all the entry
procedures and include them in the main function.

7. If any of the sub state is self looping in nature,
include infinite while loop and enclose the code
within the scope of the while loop or create a finite
looping through a for statement or while statement
using the finiteness as the controlling parameter.

8. If a class is associated with the function/
procedure to be executed as a part of entry
procedure for the first time, an instance of the
class is included before the method is called

9. Include code to start the operating system
10. Consider each of the self looping super states and

for each of the self looping super state, create
objects that are related the entry procedures of the
self looping super state

11. Include an RTOS statement for creating a task
representing the entry procedure of self looping
super state, under the control of RTOS including
the reference to stack buffer that is created earlier

12. Include statements to start RTOS

Step #11 Generate Total codes

The generation of total code thus involves the following
steps

1. Construct Library of standard code segments duly
identifying the various types of variables

2. Construct library of the standard Non member
functions through code segments and while doing
so, consolidate types of variables especially the

global and instance variable. The local, return and
functional variables are absorbed within the
functions

3. Construct library of the standard Hardware
related functions through code segments and
while doing so consolidate types of variables
especially the global and instance variable. The
local, return and functional variables are absorbed
within the functions

4. Create hardware dependent variable in the classes
related to Hardware devices duly mapping the
PINS of micro controller to the memory address
variables

5. Construct library of the standard Member
functions through code segments and while doing
so consolidate types of variables especially the
global and instance variable. The local, return and
functional variables are absorbed within the
functions

Figure 5. 1 Top Level State Diagrams

6. Map the Non member functions to the respective

classes
7. Map hardware dependent functions to hardware

processing classes
8. Map support functions to the support classes
9. Map the task oriented function to task oriented

classes
10. Include into entry procedures of each state the

functions related to various types of classes.

Initialisation and
Main Control

Temp-1 Process Temp-2 Process

Compare Temp1 and
Temp2 Process

Reset

micro
Controller

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1087

11. Build a main method by tracing the super state
sub state charts.

Figure 5.2 Elementary level State Diagram for the Top

Level State: Initialization

VI. REFINED CRSE METHODOLOGY

In the Figure 1.1, the refined CRSE methodology as a
consequence of implementing formalism and automation
for modeling the internal behavior of the embedded system
has been presented. Further refinement of CRSE has been
presented as shown in the Figure 6.1. The refinements are
made by way of introducing the code Generation and
performance optimization models. The Refined CRSE
model fully satisfies the requirements of development of
Embedded Systems.

VI. CONCLUSIONS

Hardware software co design requires that state models be
built considering both the hardware and software states of
the embedded systems. Code has to be generated using the
state models. Hardware states are the instances of the
classes that relate to the HW devices. Code related to ES
software can be generated using Framework presented in
this paper. The code generation models primarily are
developed on the premises that defect free software can be
developed using the standard code structures and the
standard code functions built from the code segments. A
repository of such standard code functions can be
maintained after thoroughly testing the same. The code
generation processes help is generating the high quality

software. The effort for developing code segments and
code function library is one time, the segments and the
function modules can be used several times whenever
newer applications are to be developed.

The models presented in these chapters formalize and
automate the process of modeling the clear boxes primarily
through code generation

Fig 6.1 Refined Clean Room software Engineering

Model after CB Stage

REFERENCES

[1] Chandra Prakash, Dr Sastry, JKR, D Bala Krishna

Kamesh, “On Verification and Validation of State
based Internal Behavioral Models of Embedded
Systems”, International Journal of Communication
Engineering Applications-IJCEA, Vol 02, Issue 02;
June 2011. 73-85

[2] Chandra Prakash, Dr Sastry, JKR, D Bala Krishna
Kamesh, Internal Behavioral Modeling of Embedded
Systems through State Box Structures, Int. J.
Advanced Networking and Applications , Volume: 02,
Issue: 06, Pages: 887-899 (2011)

[3] Dr. Sastry JKR Chandra Prakash, D, Balakrishna
kamesh, “Code Generation for Hardware Modeling
through Clear Box Structures�, Paper communicated
for publication in the forth coming issue of
International Journal of Communication
Engineering Application

[4] Dionision de Niz, Raj Rajkumar, “Glue Code
generation: Closing the Loop Hole in Model Based
Development”, IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS2004)

[5] Gang Zhou, Man-Kit Leung and Edward A. Lee, “A
Code Generation Framework for Actor-Oriented

Init
Messages

Process
Key

Validate
Password

Read
Reference1

Process
Host

LCD Process

LCD

HOST

Invalid Passwd Mesg

M1
M2

key value

KeyBaord

Reset Micro
Controlle

ATODConverter

Init
reference

Read
Reference 2

Refeence 2 Data

Reference1 data

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1088

Models with Partial Evaluation”, ICESS2007, 2007,
Springer-Verlag Berlin Heidelberg, 786-799

[6] W. Thies, M. Karczmarek, and S. Amarasinghe,
StreamIt, “A Language for Streaming Applications”,
Proceedings of the 2002 International Conference on
Compiler Construction, 2002, 2002 "Springer-
Verlag LNCS, Grenoble, France

[7] http://www.mathworks.com/product/simulink
[8] E. Kohler, R. Morris, and B. Chen, “Programming

language optimizations for modular router
configurations”, Proceedings of the Architectural
Support for Programming Languages and Operating
Systems (ASPLOS, 2002October, 251-263

[9] N. D. Jones, C. K. Gomard, and P. Sestoft, "Partial
Evaluation and Automatic Program Generation
Prentice-Hall, 1993 June

[10] Chen Xi Lu Jian Hua Zhou ZuCheng and Shang
YaoHui, “Modeling SystemC Design in UML and
Automatic Code Generation”, ASP-DAC 2005 [11]
Felix Lindlar and Armin Zimmermann, “A code
generation tool for embedded automotive systems
based on finite state machines”, IEEE international
Conference on Industrial Informatics (INDIN 2008)
Korea2008, July 13-16

[12] Matteo Bordin and Tullio Vardanega, “Real- Time
Java from an automated code generation perspective",
JTRES'07, Vienna, Austria" 2007 Sept, 26-88

[13]Marko Hannikainen,Jarno Knuutila, Antti Takko, Timo
Hamalainen and Jukka Saarinen, “Automatic C-Code
generation from SDL for a wireless MAC
PROTOCOL”, IEEE International Symposium on
Intelligent Signal Processing and Communication
System (ISPACS 2000) Honolulu, Vol. 1 PP 533-538,
2000

[14] Kjeld H. Mortensen,”Automatic Code Generation
from Colored Petri Nets for an Access Control
System”, Proceedings of 2nd workshop on practical
use of Colored Petri nets and Design / CPN 1999

[15] Kathy Dang Nguyen, Zhenxin Sun, P.S. Thiagarajan
and Weng -Fai Wong, “Model-driven SoC Design via
Executable UML to SystemC, Real-Time Systems
Symposium, 2004. Proceedings 25th IEEE
International, 2004, 5-8 Dec.459-468

[16] Luis Gomes and Aniko Costa, “From Use cases to
system implementation: State chart Based Co-Design”,
proceedings of the first ACM and IEEE International
Conference on Formal Methods and Models for Co-
Design (MEMOCODE '03)2003

Biographies

Dr JKR Sastry is presently working as Professor of
Computer Science and Engineering at K L University,
vaddeswaram and has 35 Years of experience in the field of
Information Technology. Has served the IT industry for 25
years worldwide and has been serving the Educational
Institutes for the last 9 years. Has published 55 papers in
the fields of Embedded Systems, Data warehousing, Data
Mining, Software Engineering and Wireless
Communication in the International Journals and
Conferences. Has been the reviewer for several IEEE
sponsored International and National Conferences. Has
Chaired 2 International Conferences. Has directed 4 Ph.D.
programs and has been directing 8 Ph.D. programs
concurrently.

Prof. V. Chandra Prakash is presently working in the
department of Computer Science and Engineering at K L
University, Vaddeswaram and has 35 years of experience
spanning across the Industry and Educational institutes. He
has so far published 16 papers in the International Journals
and Conferences in the field of Software Engineering and
Embedded systems.

Mr. D. Balakrishna Kamesh is presently working in the
department of Freshmen Engineering at K L University,
Vaddeswaram and has 8 years of experience spanning
across the Industry and Educational institutes. He has so far
published 9 papers in the International Conferences in the
field of Software Engineering and Embedded systems.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1089

 Serial
Number

Coding Structure Name Local variables Global Variables Instance
Variables

Argument variables Return Variables

Name Type Name Type Name Type Name Type Name Type

1 LCD-BUSSY-CHK busy int Set =01 int
 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

2 LCD-COMMAND-WRITE d int
3 LCD-DATA-WRITE Set =01 int

 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

4 LCD-NDATA-WRITE Set =01 int Data[20] char
 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

5 RS232C-RECV Include.h dat Uchar
6 RS232C-SEND dat Uchar
7 I2C-READ SDAt=P1^5 sbit i Ucar

 SCLt=P1^4 sbit dat char
8 PROCESS-DELAY i long

Table 5.1 Repository of standard code structures

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1090

Serial
Number

Standard Code
Function

Coding Structure
Name

Local variables Global Variables Instance
Variables

Argument variables Return Variables

Name Type Name Type Name Type Name Type Name Type
1 I2C_read-Temp() I2C-READ i Char SDAt=P1^5 sbit i Ucar

dat char SCLt=P1^4 sbit dat char
2 Dealy() PROCESS-DELAY i long
3 I2C_write_Temp() I2C-WRITE i Char SDAt=P1^5 sbit i uchar

dat char SCLt=P1^4 sbit dat char
4 I2c_start-temp() I2C-START SDAt=P1^5 sbit

 SCLt=P1^4 sbit
 HIGH=1 Int
 LOW=1 int

5 I2c_stop_Temp() I2C-STOP SDAt=P1^5 sbit
 SCLt=P1^4 sbit
 HIGH=1 int
 LOW=1 int

6 asciiToHex() ASCII-TO-HEX Digit0 Char value char dat unsigned
 Digit1 Char
 Ascii0 Char
 Ascii1 Char
 Ref1 Int
 Ref2 int

7 HexToAscii() HEX-TO-ASCII temp usgin
ed

Digit0 Char value char

 Digit1 Char
 value char dat usigned

Table 5.2 Repository of standard Non Member Functions

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1091

Serial
Num
ber

Standard Function
Name

Coding Structure Name/
Function name

Local variables Global Variables Instance
Variables

Argument variables Return Variables

Name Type Name Type Name Type Name Type Name Type
1 readkey() I2C_strat-temp()

I2c_write_Temp(0x70)
I2c_write_Temp(0xFE)
I2c_stop_Temp()
I2c_start_temp
I2c_write_temp(0x71)
I2c_read-temp()

2 write_Command () LCD-COMMAND-
WRITE

 Set =01 int d int
 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

3 Busy () LCD-DATA-WRITE Set =01 int
 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

4 Recv () RS232C-RECV Include.h dat Uchar
5 Data_write() LCD-DATA-WRITE Set =01 int

 Reset=00 int
 rs=P2^5 sbit
 rw=P2^4 sbit
 en=P2^3 sbit
 busy=P2^7 sbit

6 Send() RS232C-SEND dat Uchar

Table 5.3Repository of Standard Hardware related Member Functions

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1092

Serial
Number

Name of the class Delay() I2c-read I2c-write I2c-start I2c-stop Hex-Ascii ASCII-HEX Get-
Reference

1 Initialization process √ √
2 Process key √ √ √ √ √
3 Temp1Task √ √ √ √ √ √ √
4 CompareTemp1Task √
5 Temp2Task √ √ √ √ √ √ √
6 CompareTemp2Task √
7 ProcessTemp1Temp2Task √ √

Table 5.4 Mapping Non member functions to the Classes

Serial
Number

Name of the class Readkey () Command-
write()

Data-write() Busycheck () Send() Receive()

1 ProcessKey √
2 ProcessLCD √ √ √
3 ProcessHOST √ √

Table 5.5 Mapping Member Functions to the Hardware classes

Serial
Number

Name of the class ComparePasswd CompareTemp1withRef CompareTemp1withRef

1 ValidatePasswd √
2 CompareTask1 √
3 CompareTeask2 √

Table 5.6 Mapping Supporting Functions to the supporting classes

Serial
Number

Name of the class displayInitMessage displayEnterpasswd
Message

readRefTemp ConvertrefrenceDi
gits

Temp1Processi
ng Task

Temp2process
Task

comapreTem
p1Temp2Tas
k

1 InitialisationProcess √ √ √ √

2 Temp1Task √
3 Temp2Task √
4 ProcessTemp1Temp2Task √

Table 5.7 Mapping Task Functions to Execution Task Classes

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages: 1080-1093 (2011)

1093

Name of the Sequence Name of the Object Type of the Object Name of the State Entry Procedures
Display Init Messages
based on the reset
button

Operator Human Operator -
Micro Controller Hardware Micro Controller -
Initialization Process Software InitMessages InitialisationProcess. initMessages()

{
ProcessLCD. Command_Write()
ProcessLCD. Data_write ()
}

InitialisationProcess. displaypasswdMessaage()
{
ProcessLCD. Command_Write()
ProcessLCD. Data_write ()
}

Process LCD Software LCD Process ProcessLCD. Command_Write()
ProcessLCD. Data_write ()

LCD Hardware LCD -
Read password
through Key
strokes

Name of the Object Type of the Object Name of the State Entry Procedures

Key Board Hardware Keybaord -
ATODConverter Hardware ATODConverter
Micro Controller Hardware Micro Controller -
InitilisationProcess Software ProcessKey ProcessKey. Readkey ()

Process LCD Software LCD Process ProcessLCD. command_write ()

ProcessLCD. data_write ()
LCD Hardware LCD -

Table 5.8 Function Mapping to the Classes

